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ABSTRACT
In a digital preservation environment there is a need for a
complete auditing of the change of the system state. A com-
plete log ensures that the properties of the objects in the
system can be verified. Modern data management systems
such as the integrated Rule-Oriented Data System (iRODS)
allow administrators to configure complex policies. Pre- or
post-operation, these policies can trigger other state chang-
ing operations. In this paper, we describe a method that
allows us – given a complete list of state changing opera-
tions – to generate a complete audit log of the system. We
also describe an experimental implementation of the frame-
work. An important advantage of our method is that not
only do we build on sound theoretical foundations, but we
also validate the methodology in a production ready envi-
ronment which has undergone substantial quality control.
The implementation of our method can be distributed as a
turnkey solution that is ready to deploy, which significantly
shortens the gap between theoretical development and prac-
tical applications.
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1. INTRODUCTION
Researchers and practitioners at the Digital Curation Centre
(DCC) have defined digital curation as involving “maintain-
ing, preserving and adding value to digital research data
throughout its lifecycle” [10]. A data manager begins cu-
ration at the time the collection is assembled or acquired.
He or she actively manages the collection in order to “miti-
gate the risk of digital obsolescence” and “to reduce threats
to [the data’s] long-term research value” [11]. According to
DCC researchers and practitioners, auditing is one part of
the active curation of a preservation system, and provides
a means to ensure stored data has integrity and may be
trusted.

When an organization audits a digital repository, two pri-
mary standards are used: ISO 14721:2012 [12], the Open
Archival Information System (OAIS); and, ISO 16363:2012
[13], the Audit and Certification of Trustworthy Digital Repos-
itories. The former is an ISO standard and reference model
that defines an archive as something “consisting of an or-
ganization of people and systems, that has accepted the re-
sponsibility to preserve information and make it available
for a Designated Community”. The latter recommendation
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is based on the OAIS Reference Model [7]. ISO 16363 defines
a recommended practice for assessing the trustworthiness of
digital repositories. It may be used for all types of digi-
tal repositories, regardless of content type, and as the basis
for certification of the archive as “trusted” by independent
auditors. An important aspect of such auditing activity is
to show that the dynamic behavior of the digital repository
and the digital curation activities are actually being imple-
mented with regards to the objects in the digital preserva-
tion system. In previous work [1], we’ve shown that a large
part of this type of auditing can be checked by inspecting an
audit log of state changes. In this paper, we further develop
this idea by providing an implementation framework.

Auditing has important implications beyond digital preser-
vation for its own sake. The healthcare and financial services
industries, for example, are subject to government privacy
and records retention regulations. Administrators of health-
care data need to be able to prove to regulatory agencies that
patient records have only been available upon patient con-
sent. Financial records are subject to retention policies, and
need to be protected from tampering.

Auditing can also play an important role in industries that
are not subject to extensive regulatory requirements, where
it can provide insight into illegal hacking activity. Sensi-
tive internal records–HR data and corporate finances–must
be protected from unintended access and release. Auditing,
with appropriate detection algorithms, can provide admin-
istrators with real-time insight into unusual file system ac-
tivity. In the event that data is compromised, auditing can
provide an evidence trail for prosecution, as well as the abil-
ity to deconstruct an attack to develop methods to interrupt
similar attacks in the future. Data management auditing
provides the ability to guarantee regulatory compliance and
to safeguard against malicious activity.

In this paper, we propose a implementation framework that
allows us to systematically generate a complete audit log
of the system, given a complete list of state change opera-
tions. We also describe an experimental implementation of
the framework and discuss which features enable such im-
plementation. Another innovation in our implementation
is that we use the same policy enforcement mechanism for
implementing application domain policies to implement au-
diting, making auditing part of the policies. This reduces
duplicate code paths and enable higher test coverage. It
also enables interesting use cases such as auditing the audit-
ing mechanism itself, and raises questions concerning how
to ensure the termination of such auditing rules.

2. THE METHODOLOGY
In previous work [1], we have shown that a digital reposi-
tory can be seen as a state transition system and policies
related to preservation properties can be described in terms
of legal or illegal state transitions. With this process, we
tie policy certification to checking the legality of a sequence
of state changes. This allows us to implement auditing in
a digital preservation environment by providing a complete
log of the change of the system state. Existing ad hoc meth-
ods do not guarantee the completeness of the audit log. To
add to the complexity, modern data management systems
such as iRODS allow administrators to configure complex

policies to meet the requirements of different application
domains. Pre- or post-operation, these policies can trig-
ger other state changing operations. Further, the policies
can be nested. These policies are usually executed from a
policy language, which are sometimes Turing-complete pro-
gramming languages, in which case the list of operations
performed cannot be easily determined statically. Also, be-
cause of the complexity of policies, it would be inefficient to
keep track of all commands in the rule language. Rather, we
only want to audit the commands that change the system
state.

An audit log is considered “complete” for making assertions
about preservation properties when we capture all state changes.
In a computer system, an important type of state change oc-
curs when a state change operation is applied. The majority
of state change operations include: user interaction, time
triggered operations, and action trigger operations. The no-
table exception are state changes by hardware failure, which
cannot be entirely addressed on the software level. (This
type of state change is often partially addressed by redun-
dancy. When redundancy is set up, we can indirectly cap-
ture this kind of state change through certain verification
and recovery operations, for example, checking the check-
sum. The method described in this paper is therefore appli-
cable, albeit indirectly, to this type of state change).

In order to systematically capture this type of state change,
we need to find a way to systematically enumerate all state
change operations and their applications and keep track of
every state change operation.

We can systematically enumerate all state change operations
by categorizing them by the different types of effects. For
example, a subset of operations supported by the integrated
Rule-Oriented Data System (iRODS) [3] is shown in Table
1. The list of database operations, resource operations, and
network operations, etc. are fixed, whereas other types of
plugins such as microservice are designed for extensibility,
therefore no fixed operations are listed.

There is a question of whether the list of operations gen-
erated thus far is complete. To show the completeness, we
can separate the part of the software that changes the state,
or is effectful, from the part of the software that does not
change the state, or is effect-free. The effect-free part of the
system talks to the effectful part of the system through a
well-defined application programming interface (API). The
operations in the API map directly to the operations we
enumerated. If we capture all API calls across the effectful-
effect-free boundary, we capture all state changing opera-
tions.

Given a complete list of operations, and a mechanism to
capture every call of every operation, we can ensure the
completeness of the log. Immediately before and after the
application of the operations, we record the event in the
log. The implementation, which we will go into details in
the next section, will discuss how we capture this informa-
tion in a production ready system. A complete history of
the system can be reconstructed when an administrator in-
spects the log. By providing the availability of the history,
we can verify that the digital repository is compliant with



Plugin Type Plugin Operation
Resource create open read write stagetocache synctoarch registered unregistered modified re-

solve hierarchy rebalance
Authentication establish context agent auth verify

Network client start client stop agent start agent stop read header read body write header
write body

Database replica reg replica unreg replica
data object reg data obj rename object move object
collection reg coll by admin reg coll mod coll rename coll del coll by admin del coll
metadata mod data obj meta set avu metadata add avu metadata wild add avu metadata

mod avu metadata del avu metadata copy avu metadata del unused avus
resource tree add child resc reg resc del child resc del resc mod resc mod resc data paths

mod resc freespace get hierarchy for resc substitute resource hierarchies
zone reg zone mod zone rename local zone del zone get local zone
user del user check auth make temp pw mod user make limited pw reg user

access control mod access control gen query access control setup
quota calc usage and quota set quota check quota

start open close rollback commit
Microservice <microservice name>

API <api name>

Table 1: Plugin Operations

the pre-established policies. Furthermore, the API can be
modularized such that the effectful part can be encapsu-
lated into modules and they can be loaded dynamically at
run time. This provides flexibility of features yet still guar-
antees the completeness of the audit log.

To prevent users from inadvertently circumventing our soft-
ware abstraction,1 we ensure that the user can only modify
the system state through these operations by virtualizing
the storage and providing strict access control. The virtual-
ization of the storage ensures that the users are not exposed
to low level APIs that could potentially modify the system
by bypassing the system-provided operations. Strict access
controls ensure that the user cannot inadvertently bypass
the virtualization.

3. IMPLEMENTATION
We describe an implementation of our method in iRODS.
We choose to implement our method in iRODS because it
provides several key features that enable a direct translation
of our framework code. Also, the industrial level code qual-
ity allows us to bring our implementation to the production
system.

iRODS is a state-of-the-art open source software system for
addressing the key data management tasks that face users as
the size and complexity of digital data collections continue
to grow rapidly. Because the principal data management
tasks are highly interrelated, rather than taking a piecemeal
approach or addressing just a single task, the iRODS sys-
tem takes a comprehensive approach to full data life-cycle
management.

At the same time, the system design is highly user-driven
and avoids the pitfalls of a “one size fits all” design by build-
ing on a comprehensive generic platform with a highly con-

1Defending against Byzantine error is out of the scope of
this paper.

figurable architecture. In addition, iRODS offers multiple
paths to interoperation with outside systems such as repos-
itories, interfaces, and applications. This lets users adapt
iRODS to the details of their own environment in a wide
range of production applications that can emphasize differ-
ent aspects of data management in diverse domains.

Furthermore, iRODS has undergone strict quality assurance.
We repaired over 1100 identified defects in the 4.1 core code.
Using Coverity alone has vastly improved iRODS stability,
and coupled with the other tools deployed within our contin-
uous integration (CI) infrastructure, iRODS is in an enter-
prise production-ready state. In continuous topology testing
of multiple machines, our JSON-based Zone descriptions are
now ingested by an Ansible-driven engine which deploys a
full iRODS topology into our VMWare cloud infrastructure.
The current basic test deployment runs a full feature testing
suite from multiple types of configurations on every commit
to our GitHub repository.

In the nine years since iRODS was first released, the software
has been adopted for the support of a variety of research ac-
tivities. iRODS is in use at over one hundred universities
around the world, not only for preservation activities in dig-
ital repositories, but also in support of domain-specific re-
search. This utility has begun to spread into the commercial
sector, beginning with the life sciences industry. Bioinfor-
maticians use iRODS for its ability to associate data with
user-defined metadata and to track the provenance of data as
it matures from raw data into a final work product. Gradu-
ally, iRODS uptake has begun to spread to other fields, with
proofs of concept emerging in the oil exploration and enter-
tainment industries. We expect that iRODS will continue
to find use in additional fields, such as the financial services
and manufacturing industries.

In the following subsections, we describe iRODS components
that enable the design of a high performance auditing sys-
tem, and an overview of how the auditing system is imple-



mented.

3.1 Plugin architecture
iRODS has a plugin architecture. This can be seen as a
design effort is to move all effectful operations into plug-
ins, and leave the core effect-free. This separation of effect-
ful code from effect-free code allows us to make assertions
about state-changing operations through just the observa-
tion of interactions with plugins, by defining rules that are
dynamically enabled with the dynamic loading of plugin op-
erations. Besides the default supported plugins, the set of
supported effectful operations can be extended through mi-
croservice plugins.

3.2 Policy enforcement points
iRODS implements the concept of pre- and post-operation
policy enforcement points, or PEPs. These PEPs allow sys-
tem administrators to define rules to be executed either be-
fore or after each operation. The policies in a preservation
system can then be encoded as rules.

iRODS contains two types of built-in PEPs:

Pre- and post- operation PEPs: these PEPs are triggered
before and after an operation is executed. Each operation
has a pair of pre- and post- PEPs. User defined rules can be
executed at these PEPs to customize the execution of the
operations.

Configuration PEPs: these PEPs are triggered at certain
points of configuration. Each configuration has one PEP.
User defined rules can be executed at these PEPs to cus-
tomize the configuration of the system.

Built-in PEPs can be extended by dynamic PEPs. For
every plugin operation that is called, two policy enforce-
ment points are constructed (both a pre- and post- variety),
and if it has been defined in any other loaded rulebase file,
they will be executed by the rule engine. The PEP will
be constructed of the form pep_P_pre and pep_P_post,
where P is the operation. For example, for resource plu-
gin type, create operation type, the two PEPs that are
dynamically evaluated are pep_resource_create_pre and
pep_resource_create_post. If either or both have been
defined in a loaded rule base, they will be executed as ap-
propriate.

A formal definition of the semantics of PEPs are given in [2].
The flow of information from the pre- PEP to the plugin
operation to the post- PEP works as follows: pep_P_pre

should produce information that will be passed to the calling
plugin operation. The calling plugin operation will receive
any information defined by pep_P_pre and will pass its own
information to pep_P_post. pep_P_post will receive any
information from the calling plugin operation. A map data
structure is made available within the running context of
each dynamic PEP based on the plugin type of interest.
They are available via the rule engine in the polices.

For example, when running

iput -R myOtherResc newfile.txt

a create operation is called on a resource plugin to cre-
ate the file. This delegates the call to the actual plugin in-
stance’s create operation. When pep_resource_create_pre

PEP rule is evaluated, the values about the file are available
for the policy. This allows rule authors to make decisions at
a per-resource basis for this type of operation.

3.3 Pluggable rule architecture
The policies are defined at pre- and post-operation PEPs as
rules. These rules are executed through a set of rule engines.
The pluggable rule architecture allows multiple rule engines
to be dynamically and concurrently loaded. Different rule
engines can support different languages with the libraries of
that language. Every rule engine is automatically equipped
with the capability of calling microservices through a single
interface. Through the same interface one rule engine can
call rules across the rule engine boundary from another rule
engine.

This way different rules can be written while taking advan-
tage of the features of different languages, yet still work
coherently together. Full compatibility is guaranteed by de-
sign with rules written for earlier version of iRODS. Cur-
rently, the available rule engine plugins include the iRODS
rule language and Python. High performance, natively ex-
ecuted rules can also be written in C++, eliminating the
need to go through the microservice interface. Our imple-
mentation takes advantage of this capability to provide high
performance auditing of the system.

3.4 Auditing policies plugin
The semantic goal of the auditing policy plugin is to provide
a complete auditing history to the system without signifi-
cantly modifying the behavior of the system, including the
built-in behavior of the operations and user defined policies.
By “not significantly”, we mean, low runtime overhead and
no change to the semantics of the operations2.

The auditing plugin provides a turnkey solution to providing
the auditing capability to an existing iRODS deployment.
The pluggable rule architecture allows users to enable au-
diting through one switch without interference with existing
rules in the system. The code is written in C++ and is
compiled and run natively, imposing a much smaller over-
head compared to written in an interpreted language such
as Python or the iRODS rule language. The events can be
arbitrarily filtered, further reducing the overhead for diag-
nosing a specific type of issue.

The auditing plugin is implemented as a rule engine plugin.
The plugin listens to a specific set of events on the server.
This set of events include all plugin operation calls. When it
receives the event of a plugin operation call, it serializes the
calls and the parameters and writes them to the log. This
way the log can be parsed and sent to the ELK stack for
analysis (Elasticsearch, Logstash, and Kibana) [5].

Since we have shown that the audit log is complete with
regard to effectful operations, we can ask the same question
of the auditing mechanism itself. How do we know that the

2in contrast to data management policies which may change
the semantics of operations



audit mechanism does what it says it does? How do we audit
the auditing rule? Why not let the auditing rules audit their
own execution, which would close the loop?

Letting the auditing rules audit themselves may lead to an
infinite loop. Consider the following example: User A ini-
tiates Action B. Prior to Action B, the auditing rules are
triggered. This leads to an action which is the execution of
the auditing rules, before which the auditing rules are trig-
gered again to audit this new action. This leads to an infinite
loop. This rules out the simple solution of self-auditing, if
we want the auditing rules to terminate.

This is analogous to Russell’s Paradox [4], and a classic so-
lution is stratification – we can define a hierarchy of rule ex-
ecution levels, the lowest being normal rule execution. Each
upper level is responsible for auditing the level below. This
way, we can provide arbitrary levels of auditing. However,
this approach has the following limitation: the execution of
the highest level auditing rules is not audited by any other
level. We have to trust that they do what they say they do.
This can usually be remedied by extensive testing.

More formally, we assign an integer “level” to each action.
The normal actions are on level 0. The action of execution
of auditing rules triggered by level x action is on level x+ 1.
We define a cutoff level, say 2, such that actions of this
level do not trigger auditing rules. This allows us to show
that the rules for generating the audit log always terminate,
which is necessary, because a diverging policy modifies the
underlying system in a significant way.

4. RELATED WORK
Currently, practitioners and researchers in the digital li-
brary community have developed a series of self-auditing
mechanisms and independent certification of a repository as
“trustworthy”. The Center for Research Libraries [6] has
audited a handful of digital libraries and archives and certi-
fied them for trustworthiness based on ISO 16363:2011 and
ISO 14721:2012. Further work is ongoing to define the re-
quirements for certification of an organization that wishes
to provide certification services [8, 9], and to define how
those certification requirements will be upheld and moni-
tored themselves. The research outlined in this paper pro-
vides a method for proving that required state changes have
occurred when certifying a digital repository against a set
of policies.

5. CONCLUSION
In this paper, we propose a framework that allows us to gen-
erate a complete auditing log of the system, given a complete
list of state changing operations. We also describe an exper-
imental implementation of the framework in iRODS.
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