
Actionable Management Policies
Reagan W. Moore, Arcot Rajasekar,

Hao XU
UNC-CH

216 Manning Hall
Chapel Hill, NC 27599-3360

01 919 962 9548
{rwmoore@email.unc.edu,

sekar@renci.org, xuh@cs.unc.edu}

Stanley Ahalt
Renaissance Computing Institute

100 Europa Drive, Suite 540
Chapel Hill, NC 27517

01 919 445 9641
ahalt@renci.org

ABSTRACT
In this paper, we describe the implementation of policies that
automate the management and validation of collection properties.
We use the integrated Rule Oriented Data System (iRODS) to
enforce management policies on data collections. The policies are
cast as periodic rules that verify whether desired collection
properties have been maintained, identify problems, and
automatically correct properties when errors are detected. An
analysis is provided of the performance requirements for a
production system, as well as the basic functions that are needed
to implement production capable policies.

Categories and Subject Descriptors
H.4.2 [Information Systems]: Information Systems Applications
– decision support.

General Terms
Management, Design, Performance

Keywords
Policy-based data management, Rule design

1. INTRODUCTION
Data grids based on the integrated Rule Oriented Data System
(iRODS) now manage collections that are petabytes in size, that
contain hundreds of millions of files, and that are distributed
across multiple storage systems, administrative domains, and
institutions [1]. Two examples of iRODS production data grids
include the French National Institute for Nuclear Physics and
Particle Physics [2], and the Wellcome Trust Sanger Institute
genomics data grid [3]. Each data grid has a specific set of
objectives for the organization of a shareable collection. For
example, objectives may include the preservation of observational
data, or the management of data products derived from
experimental data, or the tracking of research results across
multiple analyses. Given a set of objectives, each project defines
a corresponding set of properties (assertions) to be applied to the
federated collections. The properties may be related to
authenticity, integrity, completeness, data formats used, or
semantic descriptions. The data management system needs to
provide mechanisms to enforce the desired properties, and verify
that the properties have been conserved over time.

In distributed environments a shareable collection is subject to
operational procedures that may be applied by local institutional
administrators, may be housed on storage systems with varying
preservation capabilities, and is susceptible to data loss
mechanisms related to operational, software, and hardware errors.
Thus a validation of the properties of a collection is only as good
as the application of the most recent verification process. The
development of a system that enforces the desired policies,
automates administrative tasks, verifies the required properties,
and automates repair of problems has strongly motivated the
creation of the integrated Rule Oriented Data System.

In iRODS, collection properties are enforced by defining policies
that are cast as computer actionable rules. Each client action is
trapped at a set of policy enforcement points. A rule engine then
queries a local rule base to decide which policies should be
applied, and executes the appropriate procedures. The rules are
written in a rule language that supports the definition of Event:
Condition: Procedure: Recovery-procedure.
Each procedure is composed by chaining together basic functions
as a computer executable workflow. The basic functions are
called micro-services because they can exchange information
through memory structures, or through an exchange of
parameters, or through a catalog of persistent state information, or
through files. Further, the execution of each micro-service may
generate state information that is persistently saved in a metadata
catalog.

Validation of the management policies can be done by querying
the persistent state information, or by evaluating the properties of
each file to check that the persistent state information is (still)
accurate. To verify compliance over time, audit trails may be
parsed to check accesses, application of specific policies, and
transformations performed upon the data.

The expectation is that through application of periodic rules,
administrative tasks such as integrity checks can be automated.
This includes identification of missing replicas and verification of
the checksum of each file. Recovery operations such as creation
of the required number of replicas can be automated, and logs of
all operations can be maintained.

Section 2 of this paper reviews the properties of a computer
actionable integrity policy that are needed for a production
system. In Section 3 we examine the performance of a production
rule, and in Section 4 we identify the basic functions that are
needed to implement a production integrity rule. In Section 5
multiple strategies are proposed for alternate forms of the policy.
The conclusion describes additional types of policies that can be
implemented in a policy-based data management system. The
expectation is that through choice of the appropriate policies and
procedures, required policies for data sharing, collection
formation, data publication, data analysis, and data preservation
systems can be implemented and automated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
BigData’12, September 21, 2012, San Jose, California, USA.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

2. PRODUCTION INTEGRITY POLICY
The creation of a production policy needs to address production
management challenges, as well as the enforcement of a specific
policy. The production challenges typically involve management
of the execution of the policy itself, with a goal of minimizing the
amount of labor required to execute the policy.

The simple production policy we will examine is designed to meet
the following production requirements. In the list, the generic
challenges (needed for production systems) are listed in italics.
1. Verify all input parameters for consistency.
2. Query the iRODS metadata catalog to retrieve information

about the number of files in a collection, their sizes, and the
location of replicas.

3. Verify the integrity of each file in a collection by comparing
the saved checksum with a new evaluation of each
checksum. This requires reading each file.

4. Update all replicas to the most recent version.
5. Minimize the load on production services. The average

storage system I/O rate needs to be as small as possible. We
implement a deadline scheduler to ensure that the checksums
are calculated at the slowest possible rate to meet the
specified deadline.

6. Differentiate between the logical name for a file and the
physical replica locations.

7. Identify all missing replicas and document their absence.
8. Create new replicas to replace missing replicas.

9. Implement load leveling to distribute the new replicas across
the storage systems that are being used to support the
collection.

10. Create a log file that records all repair operations performed
upon the collection.

11. Track progress of the policy execution.
12. Initialize the rule for the first execution. This includes

initializing variables, setting up a directory in which log files
are stored, calculating the required I/O rate to meet the
deadline, creating collection status flags for tracking
progress, identifying the storage systems that are being used
for the collection replicas, and verifying that the number of
storage systems is greater than or equal to the number of
required replicas.

13. Enable restart of the process from the last set of checked files
in case of a system halt.

14. Manipulate files in batches of 256 files at a time to handle
arbitrarily large collections.

15. Minimize the number of sleep periods used by the deadline
scheduler. This is set by specifying a minimum amount of
time to sleep when the execution rate is too fast.

16. Include the checking of new files that have been added
during the execution of the policy if a restart is needed.

17. Write out statistics about the effective execution rate, and the
number of files checked.

We note that of the 17 objectives, only three objectives are
specific to the integrity policy. The expectation is that the
remaining 14 objectives can be cast as a template for the
execution of other production policies.

2.1 Implementation
Each of these objectives is expressed as an executable workflow
that is applied by the iRODS rule engine. The iRODS workflow
language provides basic constructs (implemented as micro-
services) that can be used to control the operations. The basic
operations include:

• Support for variables – integers, strings, binary, double,
Boolean, lists

• Arithmetic – add, subtract, multiple, divide

• String manipulation – subset, concatenate

• Loops – for, foreach, while

• Conditional tests – if then else, and, or

• Breaks – conditional exit from a loop

The basic operations are augmented with micro-services that
encapsulate specific manipulation functions, such as querying the
metadata catalog, metadata manipulation, file and directory
manipulation, evaluating a checksum, and updating replicas to the
most recent version. In iRODS, there are currently about 250
micro-services that are provided to support workflows, data and
metadata manipulation, message passing, interaction with web
services and remote systems, and debugging [4].
We illustrate selected production policy objectives with the actual
iRODS rule language code. In the iRODS rule language, each
variable name is denoted by a leading asterisk. String variable
values are specified using double quotes. The input to the
integrity rule is four variables:

• The collection that will be examined, *Coll

• The desired total run time, *Delt

• The required number of replicas, *NumReplicas

• The resource where the log file will be stored, *Res

A simple initiation test is to verify that the *Coll variable actually
specifies a collection, and not some other entity such as a file.
The iRODS micro-service msiIsColl can be used to do this:
--
check whether a collection was defined
 msiIsColl(*Coll, *Result, *Status);
 if(*Result == 0 || *Status < 0) {
 writeLine("stdout","Input path *Coll is not a collection");
 fail;
 }
--

The msiIsColl micro-service takes the collection name as an input
parameter, and returns a result flag *Result that has the value 1 if
the pathname is a collection, and a status flag *Status that is
negative if it has an execution error. If either test fails, an output
line is written to standard out by the writeLine micro-service, and
the rule is then terminated.
To test whether the rule execution is a restart or an initial
execution, a metadata attribute, called TEST_DATA_ID is
associated with the collection name. If this attribute is missing,
then the rule is being run for the first time and a default value is
added as an attribute on the collection. Otherwise the value of
this metadata attribute is used to track which DATA_ID was last
successfully checked.

--

check whether the attribute TEST_DATA_ID has been set from
a prior execution
*Val = "0";
msiExecStrCondQuery("SELECT
COUNT(META_COLL_ATTR_NAME) where COLL_NAME =
'*Coll' and META_COLL_ATTR_NAME = 'TEST_DATA_ID'",
*GenQOut2);

foreach (*GenQOut2) { msiGetValByKey(*GenQOut2,
"META_COLL_ATTR_NAME", *Val); }
if(int(*Val) == 0) {
 *Str1 = "TEST_DATA_ID=0";
 msiString2KeyValPair(*Str1,*kvp);
 msiAssociateKeyValuePairsToObj(*kvp,*Coll,"-C");

 writeLine("*Lfile","added TEST_DATA_ID attribute to
collection *Coll");
}
on a restart TEST_DATA_ID will be greater than 0
msiMakeGenQuery("META_COLL_ATTR_VALUE",
"COLL_NAME = '*Coll' and META_COLL_ATTR_NAME =
'TEST_DATA_ID'", *GenQInp2);

msiExecGenQuery(*GenQInp2,*GenQOut2);
foreach(*GenQOut2) {
 msiGetValByKey(*GenQOut2,
"META_COLL_ATTR_VALUE", *colldataID);
}

*colldataID is the string identifier of the last file that has been
checked

The query that is issued to the metadata catalog by the
msiExecStrCondQuery micro-service counts the number of times
the metadata attribute with the name TEST_DATA_ID is present
on the collection *Coll. Note that schema indirection is used for
status metadata, with the name of the collection attribute stored in
META_COLL_ATTR_NAME. The value of the collection
attribute is stored in META_COLL_ATTR_VALUE. The values
returned from the metadata catalog are returned as strings. Thus
the number of appearances of the metadata attribute (*Val) has to
be converted to an integer with the “int” micro-service. To add a
metadata attribute to the collection, a key-value pair defined in the
string “*Str1” is converted to a key-value pair structure by the
micro-service msiString2KeyValPair. The structure is then used
as input to the micro-service, msiAssociateKeyValuePairsToObj,
that loads the well-formed metadata into a collection attribute.

iRODS can separate the formation of a query from the execution
of a query. The arguments for the micro-service
msiMakeGenQuery specify the selection variables, the condition,
and the name of the string variable that holds the query,
*GenQInp2. The arguments for the micro-service
msiExecGenQuery specify the string holding the query and a
structure that holds up to 256 rows of the query result,
*GenQOut2. The foreach loop over the query result iterates
through each row. The micro-service msiGetValByKey extracts
the value of the specified state information from the structure and
stores the value in a workflow variable, *colldataID.

This illustrates the type of operations that are performed within a
data management workflow. Queries are made on the metadata
catalog and returned through in-memory structures. Data can be

read from the in-memory structures and used to initialize
variables, which can then be manipulated or tested.

The deadline scheduler is implemented by comparing the rate at
which the checksums are being performed against an expected
execution rate. The desired I/O rate (*Fac) is calculated by
summing the size of all of the files in the collection, *Coll, and
dividing by the input total duration, *Delt. The actual average I/O
rate is calculated by tracking the run time and the size of the data
that have been checksummed. The “msiGetSystemTime” micro-
service returns the time in seconds from an initial epoch. This is
called at the start of the policy execution to establish the start
time, *TimeS. A variable, *Runsize, is incremented by the size of
each checksummed file. After completion of each batch of
checksums (256 files at a time), the current system time is
retrieved, *timei. The time when the checksums should have
completed (*timerun = int(*TimeS) + *Runsize / *Fac) is
compared with the current time. If the difference is greater than
the minimum sleep time, typically four seconds, the average
execution rate is slowed down through an explicit sleep call,
msiSleep.

The management of restarts depends on the use of a unique
internal iRODS identifier for each file, DATA_ID. This identifier
is incremented each time a file is added, and counts the total
number of files that have been added to the data grid. Thus the
DATA_ID identifier is monotonically increasing and can be used
to order result sets from queries made on the iCAT catalog. The
query:

msiMakeGenQuery("order(DATA_ID), DATA_SIZE,
DATA_NAME, COLL_NAME, DATA_CHECKSUM",
"COLL_NAME = '*Coll' and DATA_ID > '*colldataID'",
*GenQInp);
generates a query for a monotonically increasing list of all
DATA_ID values of files in the collection *Coll, that have a
DATA_ID value greater than the restart value *colldataID, and
returns the DATA_ID, the size of the file (DATA_SIZE), the
name of the data file (DATA_NAME), the name of the collection
(COLL_NAME), and the value of the checksum
(DATA_CHECKSUM). Since the collection *Coll may contain
subcollections, the current collection name is retrieved to define
the correct logical name for the file. The logical name is
constructed as a string, "*Colln/*Name", where *Colln and
*Name are retrieved from the query result structure using the
msiGetValByKey micro-service.

The integrity rule loops over the result set from this query, which
contains a list of all of the logical file names in the collection. For
each logical name, a separate query is made to the metadata
catalog to retrieve information about all of the replicas associated
with the logical name. Thus the policy has to support nested
loops, a “while” loop that iterates over batches of 256 logical
names, a “foreach” loop that iterates over the logical names, and a
second “foreach” loop that iterates over the physical replica
locations for each logical file name.
The implementation of load leveling across the storage systems
that are used for replicas for the collection is implemented by
constructing a list of all resources used by the collection. A
simple query on the metadata catalog
 msiMakeGenQuery("DATA_RESC_NAME","COLL_NAME=
'*Coll'", *GenQInpr);
retrieves all of the resources that are used to store file for the
collection, *Coll. The names of the resources are extracted from
the query result structure and stored in a list. When the location

of the replicas for a specific logical file name is found, a second
list is created that marks whether or not the resources from the
resource list have been used. To implement load leveling, a
pointer is maintained to the last resource that was used from the
resource list. After the creation of a new replica, the point is
incremented modulo the length of the replica list. This ensures
that the missing replicas will not be re-created on a single storage
system.

After each batch of 256 files, the collection attribute value for
TEST_DATA_ID is reset to the DATA_ID of the last file that
was checked. This ensures that on a restart, the system will be
able to skip files that have already been verified. This approach
works because the DATA_ID for each file is a unique, persistent,
monotonically increasing identifier.
The complete rule is shown in Section 7.

3. PERFORMANCE
The tests of production rules for verifying properties of a
collection include the validation of the policy, analysis of the
execution time, and determination of some idea of the load on the
system. We track the time needed to loop over the data sets, the
time needed to execute the micro-service, and the time needed to
interact with files on a local disk.

The tests were run on an Ubuntu operating system within a
Virtual Box emulator on a MacPro 2.53 GHz Intel Core i5
computer. The disk had a rotational rate of 5400 rpm (disk
rotational latency of 11 milliseconds). Data transfer time to put a
200 MByte file into an iRODS local disk vault was 4 seconds,
implying an effective transfer rate of 50 Mbytes/second.

The version of the iRODS software was 3.1, revision 4882 from
the SVN repository. This revision included modifications to the
writeLine micro-service to support writing to a log file, revisions
to the rule engine for parsing rules, and revisions to the
msiCloseGenQuery micro-service for closing buffers. These
revisions are needed to implement all of the features of the
integrity policy.

To test performance, collections were created that contained
21,000 files, 40,0000 files, and 100,000 files. Each file was 877
bytes in size. The performance results were strongly dominated
by the latency of the system, since the size of the files was very
small. The time needed to read a file from a directory on the Mac
operating system and write the file into an Ubuntu directory
averaged 18.2 milliseconds. This time is a combination of the
rotational latency (11 milliseconds) and the seek latency (about 5
milliseconds). Manipulations of files (such as a checksum
calculation) are expected to take at least one spin rotational
latency time.

To test the execution rate of the rule engine, a simple loop test
was constructed that looped over a counter one million times. The
time per loop iteration (while statement exit test, counter
increment) was 35 microseconds per iteration. Thus a single
invocation of the rule engine will take about 18 microseconds on
average, which is 1000 times faster than the observed time to read
and write a small file.

A second performance test was constructed that looped over the
files in the 100,000-file collection, retrieving the file name from
the query result structure. The time per loop iteration was 160
microseconds. The loop made queries to the iCAT metadata
catalog to retrieve information in batches of 256 files. Hence the
cost of interacting with the database was effectively amortized.

To better estimate the time for simple queries to the database, a
test was constructed that first looped over all the files in a
collection, and then for each file made an additional query for the
DATA_NAME, COLL_NAME, and DATA_RESC_NAME.
This was applied to a collection with 21,000 files, and took on
average 714 microseconds per query. These analyses show that
the latency of interaction with the disk at 11 milliseconds
dominates the time needed to either query the metadata catalog at
0.71 milliseconds per query or perform operations at 0.16
milliseconds per operation. The latency of the disk is about 100
times slower than the combination of the rule engine and metadata
catalog latencies.

The full replication rule was run on a collection of 21,000 logical
file names with two physical replicas for each logical file name
(42,000 physical files total). The time to run the policy was 132
seconds when file access was turned off. This is the time needed
to perform the nested queries against the metadata catalog, and
apply the logic to control the checksums and replica counts. The
average loop and query time per file was 6.3 milliseconds. With
file access (and checksums) turned on, the run time increased to
920 seconds, or 21.9 milliseconds per file. This is close to the
sum of a rotational latency plus the loop and query time plus a
seek latency of 4.6 milliseconds. Since the replicas are stored on
a separate directory on the same disk, the system did have to
move the disk head back and forth for every two files.
The observed performance is quite reasonable, indicating that
rules that use several hundred lines of workflow and micro-
service operations can keep up with disk rotational latencies.

4. BASIC FUNCTIONS
A second important characterization is the type and number of
basic functions that are needed to implement a production rule.
For the integrity test example, the following workflow operations
were required:

Arithmetic (+, -, *, /)
Boolean tests (==, !=, &&, ||, >, <, >=)
Conditional statements
 if
 then
 else
Control
 break
 fail
Loops
 for
 foreach
 while
List manipulation
 initialization
 list addition (cons)
 extracting an element from a list (elem)
 updating an element in a list (setelem)
Variable manipulation
 initialization

type conversion (int, double, str)
string concatenation

These operations comprise a minimal set of workflow operations
needed to implement validation policies.

Of greater interest is the set of basic operations that were invoked
during the execution of the integrity policy. They have been
roughly organized into categories for metadata catalog

interactions, data and directory manipulations, and system
functions.

Metadata catalog manipulation
 msiGetValByKey get metadata from structure
 msiExecStrCondQuery execute string conditional query
 msiString2KeyValPair convert string to key-value pair
 msiAssociateKeyValuePairsToObj add metadata
 msiMakeGenQuery create a query
 msiExecGenQuery execute a query
 msiCloseGenQuery release query buffers
 msiGetContInxFromGenQueryOut check for more rows
 msiRemoveKeyValuePairsFromObj remove metadata
 msiGetMoreRows get more rows from query

Data and directory manipulation
 msiIsColl check whether name is a collection
 msiCollCreate create a collection
 msiDataObjCreate create a file
 msiDataObjRepl replicate a file
 msiDataObjChksum checksum a file
 msiDataObjUnlink delete a file

System functions
 msiGetSystemTime get the system time
 writeLine write a line to a file or standard out
 msiSleep sleep

The complete set of workflow operators and basic micro-services
are listed in [4]. Each community that implements management
policies or validation criteria adds micro-services that implement
required functions. Examples of additional micro-services include
support for message passing (track status and debug support),
partial I/O on files, invocation of remote web services, remote
procedure execution, delayed and periodic execution of policies,
template-based pattern analysis and extraction of metadata, XML
parsing, bulk metadata loading, etc.

5. STRATEGIES
The performance that was demonstrated with the integrity rule can
be improved. For the test environment, disk rotational latency
dominated. There are multiple ways to minimize the latency and
decrease the time spent by the rule engine:

• Aggregate files into a container such as a tar file. The
system performance will then be limited primarily by
the time to read and checksum a large file. The number
of queries of the metadata catalog and the number of
iterations will be minimized. The downside is that if a
problem is found, a large file will need to be written.

• Implement a workflow operator that integrates queries
on the metadata catalog with loops over the result set.
This simplifies the logic, and minimizes the time
required for executing the loop logic. However, at best
this saves 6 milliseconds out of a per file execution time
of 21 milliseconds.

• Implement the entire logic in a micro-service. This
moves manipulations out of the rule language into C
code. This approach has been implemented in the
micro-service msiAutoReplicateService. The micro-
service input parameters are the collection name,
whether recursion is enabled across sub-directories, the
number of required replicas, the name of the resource

group that contains all of the storage locations, and an
optional e-mail address for sending completion
notifications. The msiAutoReplicateService micro--
service does not implement a log file for operations
performed, does not control the execution rate, and does
not do load leveling. However it does verify the
checksum of each file and replace missing replicas.

6. CONCLUSION
The implementation of policies that automate administrative tasks,
and validate assessment criteria is straightforward within the
iRODS policy-based data management system. The extensibility
of iRODS makes it possible to add new policies and add new
procedures for data management related tasks. Part of the power
of the system comes from characterization of data management as
operations applied on virtual name spaces. The iRODS data grid
manages virtual name spaces for users, objects collections, storage
systems, state information, policies, and procedures. For each
name space, a set of operations are defined that can manipulate
the associated entities. For each set of operations, a virtualization
mechanism is defined that enables application of the operations
across multiple types of storage and data management
infrastructure.

Examples of the types of operations are shown in the following
chart.

Name Space Operations Virtualization
interface

Users Authentication,
authorization, groups

GSSAPI / PAM

Objects Partial I/O, move, copy,
replicate, share

Posix I/O & staging

Collections Organization, browsing System metadata

State
information

Add, update, delete,
query

Catalog interface to
DBMS

Resources Load leveling, fault
tolerance, grouping

Storage drivers

Policies Management, versions,
administrative,
verification

Policy language

Procedures Basic functions on each
name space

Workflows

The iRODS data grid provides a single sign-on environment for
users to access a shared collection that may be stored across
multiple administrative domains. The user name space enables
iRODS to manage access controls across the systems without
having to establish accounts for each user at the remote storage
location. The iRODS system is being upgrade to use Pluggable
Authentication Modules to enable interaction with modern
authentication systems. The Grid Security Service API (GSSAPI)
supports authentication via Grid Security Infrastructure, Kerberos,
and challenge response mechanisms.

The object name space can be used to register files, database
queries, and soft links to data in remote resources. The iRODS
data grid is being extended to support registration of workflows.
This tightly couples input parameter files for a workflow to the
output files created by running the workflow. Since the workflow
is registered as an iRODS object, the same access controls apply
to workflows as to files. It is possible to share workflows, put
access controls on workflows, and re-execute workflows. This is

an essential capability for reproducible science. The workflow
that is executed uses the same rule language that is used to create
procedures for policy enforcement. This means that one can
register a policy into the data grid, manage the parameters
associated with the policy, and archive the log files from each
execution of the policy.
The formation of shared collections enables the organization of
distributed files into a logical collection. It is then possible to
browse the logical collection, associate metadata with the
collection, and manage status flags on processing the collection.
These capabilities were essential for implementing the integrity
policy.

The management of persistent state information was also essential
for the execution of the integrity policy. Metadata can be
associated with an entity in any of the name spaces. Thus
metadata can be applied to users, objects, collections, and storage
systems. The mechanisms to update metadata, add new metadata
attributes, and query metadata make it possible to manage long-
running processes. All of the metadata are stored in a metadata
catalog.
The resources name space is used to implement compound
resources (disk caches in front of tape archives) and groups of
resources. If the data are stored on a tape archive, the data are
staged to a disk where the policies are then applied. Thus a

request to checksum a file that is stored on tape automatically
causes the file to be staged to a disk, and the checksum is then
performed. Groups of resources can be used to define storage
systems that support collective operations. A group of resources
could be used with a policy that causes files to be automatically
replicated across all storage systems in the group.
The policy name space supports versions of policies. The policies
are stored in the metadata catalog. It is possible to add new
versions of policies, define which policies will be applied at a
specific storage location, distribute policies to storage systems,
and list the set of policies that are being applied.

The procedure name space supports versions of micro-services. A
policy can be defined that applies to a specific collection or type
of file, or group of persons, with a specific version of a micro-
service used to implement the associated procedure. This makes
it possible for the data management system to support multiple
collections that have different policies and procedures within the
same generic infrastructure.

The expectation is that the extensibility enabled by the
management of the multiple virtual name spaces, makes it
possible for the same generic infrastructure to support data
sharing (data grids), data publication (digital libraries), data
processing (data pipelines), and data preservation (archives).

7. Listing of the Integrity Rule

schedulerReplicas {
This rule requires iRODS version 3.1 (msiCloseGenQuery mods)
The replicas for each file are updated to the most recent version
Each file is checked to verify whether all required replicas exist and have valid checksums
As replicas are created, the algorithm round robins through available storage vaults
Checks that the number of storage resources used within a collection is greater than or
equal to the number of desired replicas.
This uses a just in time scheduler that slows down the processing rate
to complete the task within the specified number of seconds (*Delt)
Checks a TEST_DATA_ID parameter associated with the collection
to determine enable restarts after system interrupts
Writes a log file stored as Check-Timestamp in directory *Coll/log
get current time, Timestamp is YYY-MM-DD.hh:mm:ss
 msiGetSystemTime(*TimeS,"unix");
 msiGetSystemTime(*TimeH,"human");
 *NumBadFiles = 0;
 *NumRepCreated = 0;
 *NumFiles = 0;
 *Runsize = double(0);
 *Sleeptime = 0;
 *colldataID = "0";
#this is used to round robin through available storage resources
 *Jround = 0;
check whether a collection was defined
 msiIsColl(*Coll,*Result, *Status);
 if(*Result == 0 || *Status < 0) {
 writeLine("stdout","Input path *Coll is not a collection");
 fail;
 }
#============ create a collection for log files if it does not exist ===============
 *LPath = "*Coll/log";
 msiIsColl(*LPath,*Result, *Status);
 if(*Result == 0 || *Status < 0) {
 msiCollCreate(*LPath, "0", *Status);
 if(*Status < 0) {

 writeLine("stdout","Could not create log collection");
 fail;
 }
 }
create file into which results will be written
 *Lfile = "*LPath/Check-*TimeH";
 *Dfile = "destRescName=*Res++++forceFlag=";
 msiDataObjCreate(*Lfile, *Dfile, *L_FD);
check whether the attribute TEST_DATA_ID has been set from a prior execution
 *Val = "0";
 msiExecStrCondQuery("SELECT COUNT(META_COLL_ATTR_NAME) where COLL_NAME = '*Coll' and
META_COLL_ATTR_NAME = 'TEST_DATA_ID'",*GenQOut2);
 foreach (*GenQOut2) {
 msiGetValByKey(*GenQOut2, "META_COLL_ATTR_NAME", *Val);
 }
 if(int(*Val) == 0) {
 *Str1 = "TEST_DATA_ID=0";
 msiString2KeyValPair(*Str1,*kvp);
 msiAssociateKeyValuePairsToObj(*kvp,*Coll,"-C");
 writeLine("*Lfile","added TEST_DATA_ID attribute to collection *Coll");
 }
on a restart TEST_DATA_ID will be greater than 0
 msiMakeGenQuery("META_COLL_ATTR_VALUE", "COLL_NAME = '*Coll' and META_COLL_ATTR_NAME =
'TEST_DATA_ID'",*GenQInp2);
 msiExecGenQuery(*GenQInp2,*GenQOut2);
 foreach(*GenQOut2) {
 msiGetValByKey(*GenQOut2, "META_COLL_ATTR_VALUE",*colldataID);
 }
*colldataID is the string identifier of the last file that has been checked
 msiCloseGenQuery(*GenQInp2, *GenQOut2);
 msiMakeGenQuery("count(DATA_NAME), sum(DATA_SIZE)","COLL_NAME = '*Coll' and DATA_ID > '*colldataID'", *GenQInp2);
this counts all files that have not yet been checked including replicas
 msiExecGenQuery(*GenQInp2, *GenQOut2);
 foreach(*GenQOut2) {
 msiGetValByKey(*GenQOut2, "DATA_NAME", *num);
 msiGetValByKey(*GenQOut2, "DATA_SIZE", *sizetotal);
 }
 msiCloseGenQuery(*GenQInp2, *GenQOut2);
 *Size = double(*sizetotal);
 *Num = int(*num);
expected execution time = 0.0161 (sec) * (number of files) + (total size) / (50 MBytes/sec)
 *Timeest = int(*Num / 62) + int(*Size / 50000000);
 writeLine("*Lfile","Estimated time is *Timeest seconds, total time is *Delt seconds, number of files is *Num, and total size is *Size
bytes");
 writeLine("*Lfile","Number of required copies of a file is *NumReplicas");
 if(*Delt > 0 && *Size > 0) {
 *Fac = *Size / *Delt;
 writeLine("*Lfile", "Required analysis rate is *Fac bytes/second");
identify the resources that were used for the collection
 msiMakeGenQuery("DATA_RESC_NAME","COLL_NAME = '*Coll' and DATA_ID > '*colldataID'",*GenQInpr);
 msiExecGenQuery(*GenQInpr,*GenQOutr);
 *Ir = 0;
 *Rlist = list();
 *Ulist = list();
 foreach(*GenQOutr) {
 msiGetValByKey(*GenQOutr,"DATA_RESC_NAME",*Str1);
 *Rlist = cons(*Str1,*Rlist);
 *Ulist = cons("0",*Ulist);
 writeLine("*Lfile","Collection *Coll uses storage resource *Str1");
 *Ir = *Ir + 1;
 }
 *Ulist0 = *Ulist;
 *Irm1 = *Ir - 1;
 if(*Ir < *NumReplicas) {

 writeLine("stdout","Required number of replicas, *NumReplicas, exceeds the number of storage vaults, *Ir");
 writeLine("*Lfile","Required number of replicas, *NumReplicas, exceeds the number of storage vaults, *Ir");
 fail;
 }
 msiCloseGenQuery(*GenQInpr, *GenQOutr);
 msiMakeGenQuery("order(DATA_ID), DATA_SIZE, DATA_NAME, COLL_NAME, DATA_CHECKSUM","COLL_NAME =
'*Coll' and DATA_ID > '*colldataID'",*GenQInp);
 msiExecGenQuery(*GenQInp, *GenQOut);
 msiGetContInxFromGenQueryOut(*GenQOut,*ContInxNew);
 *ContInxOld = 1;
 while (*ContInxOld > 0) {
 foreach(*GenQOut) {
 msiGetValByKey(*GenQOut, "DATA_SIZE", *Sizedata);
 msiGetValByKey(*GenQOut, "DATA_ID", *newdataID);
 msiGetValByKey(*GenQOut, "DATA_NAME", *Name);
 msiGetValByKey(*GenQOut, "COLL_NAME", *Colln);
first update all replicas to the most recent version
 msiDataObjRepl("*Colln/*Name","updateRepl=++++irodsAdmin=",*Status2);
 if(*Status2 != 0) {
 writeLine("*Lfile","Unable to update replicas to most recent version for *Colln/*Name");
 }
get all replica numbers for this file
 msiMakeGenQuery("DATA_REPL_NUM,DATA_CHECKSUM,DATA_RESC_NAME", "COLL_NAME = '*Colln' and
DATA_NAME = '*Name'", *GenQInp4);
 msiExecGenQuery(*GenQInp4, *GenQOut4);
 *Numr = 0;
 *Ulist = *Ulist0;
 foreach(*GenQOut4) {
 *Numr = *Numr + 1;
 msiGetValByKey(*GenQOut4, "DATA_REPL_NUM", *Repln);
 msiGetValByKey(*GenQOut4, "DATA_CHECKSUM", *Chk);
 msiGetValByKey(*GenQOut4, "DATA_RESC_NAME", *Rescn);
 msiDataObjChksum("*Colln/*Name", "replNum=*Repln++++forceChksum=", *Chkf);
 if(int(*Chk) == 0) {
 *Chk = *Chkf;
 }
save list of resources and pick resource to use as source
 if(int(*Chk) == int(*Chkf)) {
 for(*J=0;*J<*Ir;*J=*J+1) {
 if(elem(*Rlist,*J) == *Rescn) {
 *Ulist = setelem(*Ulist,*J,"1");
 *Resource = *Rescn;
 break;
 }
 }
 }
 if (int(*Chk) != int(*Chkf)) {
 writeLine("*Lfile","Bad checksum for replica *Repln of file *Colln/*Name with DATA_ID *newdataID.");
 *NumBadFiles = *NumBadFiles + 1;
msiDataObjUnlink("objPath=*Colln/*Name++++replNum=*Repln", *Status);
 writeLine("*Lfile","Deleted replica *Repln of file *Colln/*Name");
 *Numr = *Numr - 1;
 }
 }
test whether the required number of replicas exists
 if (*Numr != *NumReplicas) {
 *N = *NumReplicas - *Numr;
 if(*N > 0) {
 writeLine("*Lfile","File *Colln/*Name is missing *N replicas");
 for(*I = 0;*I<*N;*I=*I+1) {
pick resource to use for storing replica, round robin through storage systems without a replica
 *Check = false;
 for(*L = 0;*L<*Ir;*L=*L+1) {
 *J = *L + *Jround;

 if(*J >= *Ir) {
 *J = *J - *Ir;
 }
 *Stu = elem(*Ulist,*J);
 if(*Stu == "0") {
 *Resu = elem(*Rlist,*J);
 msiDataObjRepl("*Colln/*Name","destRescName=*Resu++++rescName=*Resource++++irodsAdmin=",*Status1);
 *NumRepCreated = *NumRepCreated + 1;
 *Ulist = setelem(*Ulist,*J,"1");
 *Check = true;
 *Jround = *J + 1;
 if(*Jround >= *Ir) {
 *Jround = 0;
 }
 if(*Status1 < 0) {
 *NumRepCreated = *NumRepCreated - 1;
 writeLine("*Lfile","Unable to create a replica for *Colln/*Name on resource *Resu");
 *Check = false;
 }
 }
 if(*Check == true) {
 break;
 }
 }
 }
 }
 }
 msiCloseGenQuery(*GenQInp4,*GenQOut4);
slow rate at which are processing collection
 *Runsize = *Runsize + double(*Sizedata);
 msiGetSystemTime(*timei, "unix");
 *timerun = int(*TimeS) + *Runsize / *Fac;
 *delt = *timerun - int(*timei);
 if (*delt > 4) {
 msiSleep(str(*delt), "0");
 *Sleeptime = *Sleeptime + *delt;
 }
 *NumFiles = *NumFiles + 1;
 }
 *Str1 = "TEST_DATA_ID=*colldataID";
 msiString2KeyValPair(*Str1, *kvp1);
 msiRemoveKeyValuePairsFromObj(*kvp1, *Coll, "-C");
 *colldataID = *newdataID;
 *Str2 = "TEST_DATA_ID=*colldataID";
 msiString2KeyValPair(*Str2, *kvp);
 msiAssociateKeyValuePairsToObj(*kvp, *Coll, "-C");
 writeLine("*Lfile", "Reset TEST_DATA_ID to *colldataID for collection *Coll");
 *ContInxOld = *ContInxNew;
 if (*ContInxOld > 0) {
 msiGetMoreRows(*GenQInp,*GenQOut,*ContInxNew);
 }
 }
 writeLine("*Lfile", "Number of logical file names tested is *NumFiles, total size checked is *Runsize bytes, and total time slept is
*Sleeptime seconds");
 writeLine("*Lfile", "Number of bad files is *NumBadFiles, and number of replicated files created is *NumRepCreated");
 #reset TEST_DATA_ID status flag to zero
 msiExecStrCondQuery("select META_COLL_ATTR_VALUE where COLL_NAME = '*Coll' and META_COLL_ATTR_NAME =
'TEST_DATA_ID'", *GenQOut2);
 foreach(*GenQOut2) {
 msiGetValByKey(*GenQOut2, "META_COLL_ATTR_VALUE",*colldataID);
 }
 *Str1 = "TEST_DATA_ID=*colldataID";
 msiString2KeyValPair(*Str1, *kvp1);
 msiRemoveKeyValuePairsFromObj(*kvp1, *Coll, "-C");

 *Str2 = "TEST_DATA_ID=0";
 msiString2KeyValPair(*Str2, *kvp);
 msiAssociateKeyValuePairsToObj(*kvp,*Coll,"-C");
 writeLine("*Lfile", "Reset TEST_DATA_ID to 0 indicating a successful completion of the integrity check");
 }
Calculate actual elapsed time
 msiGetSystemTime(*TimeE, "unix");
 *Del = int(*TimeE) - int(*TimeS);
 writeLine("*Lfile","Total elapsed time is *Del seconds");
}
INPUT *Coll=$"/tempZone/home/rods/test21000", *Delt=10, *NumReplicas = 2, *Res="demoResc"
OUTPUT ruleExecOut

8. ACKNOWLEDGMENTS
The development of the iRODS data grid and the research results
in this paper were funded by the NSF Office of
Cyberinfrastructure OCI-0848296 grant, “NARA
Transcontinental Persistent Archive Prototype”, (2008-2012), the
NSF ITR 0427196 grant, “Constraint-based Knowledge Systems
for Grids, Digital Libraries, and Persistent Archives” (2004-2007),
the NSF SDCI 0721400 grant, "SDCI Data Improvement: Data
Grids for Community Driven Applications” (2007-2010), the NSF
OCI-1032732 grant, "SDCI Data Improvement: Improvement and
Sustainability of iRODS Data Grid Software for Multi-
Disciplinary Community Driven Application," (2010-2013), and
the NSF Cooperative Agreement OCI-094084, “DataNet
Federation Consortium”, (2011-2013).

9. REFERENCES
[1] Rajasekar, R., Wan, M., Moore, R., Schroeder, W., Chen, S.-

Y., Gilbert, L., Hou, C.-Y., Lee, C., Marciano, R., Tooby, P.,
de Torcy, A., and Zhu, B.. 2010. iRODS Primer: Integrated

Rule-Oriented Data System, Morgan & Claypool. DOI=	

10.2200/S00233ED1V01Y200912ICR012.

[2] Nief,	
 J.-­‐Y.	
 2010.	
 iRODS usage at CC-IN2P3.	
 In	
 Proceedings
iRODS User Group Meeting 2010: Policy-Based Data
Management, Sharing, and Preservation.CreateSpace. ISBN-
13: 978-1452813424.

[3] Chiang, G.-T., Clapham, P., Qi, G., Sale, K., and Coates, G.
2011. Implementing a genomic data management system
using iRODS in the Wellcome Trust Sanger Institute. In
BMC Bioinformatics 12:361. DOI=10.1186/1471-2105-12-
361.

[4] Ward, J., Wan, M., Schroeder, W., Rajasekar, A., de Torcy,
A., Russell, T., Xu, H., Moore, R. 2011. The integrated Rule-
Oriented Data System (iRODS 3.0) Micro-service Workbook,
DICE Foundation, November 2011, ISBN: 9781466469129,
Amazon.com

